Unsere Chiwa kriegt davon definitiv Hufrehe, wenn sie dort länger als stundenweise grast
Ich habe ja eben in meinem Link über die Fotos von weiteren Pflanzen auf unserem Weideland auch eine pdf verlinkt mit der Aussage, dass zwar Kleearten, Wicken- und Platterbsen-Arten auch auf Weiden vorkommen sollten, aber mehr als 30 % zum Beispiel zur sogenannten Trifoliose führt.
Also nicht nur dass, bei Pferden mit Hufrehe-Neigung löst das auch Hufrehe aus.
Ich habe mal was dazu raus gesucht und verlinke Euch das mal und kopiere, da aus Wikipedia, die wichtigsten Passagen zum besseren Verständnis raus:
...
Klee als Giftpflanze
Kleearten sind wertvolle Futterpflanzen, dennoch können sie in Abhängigkeit von der Jahreszeit, der Witterung und der verfütterten Menge zu Schäden bei Tieren führen. Rinder sind durch Klee-Arten vor allem bei übermäßiger Fütterung oder bei nassem Klee gefährdet.Viele Kleearten können durch die in ihnen enthaltenen Thiocyanate (anorganische Salze) bei Tieren phototoxische Reaktionen hervorrufen und zu einer Überempfindlichkeit gegenüber Licht führen. Diese Erkrankung wird Trifoliose oder Kleekrankheit genannt. Sie äußert sich in geröteten und geschwollenen Augenlidern und Lippen, auch andere ungeschützte Hautpartien können betroffen sein. Trifoliose tritt vor allem bei Pferden, Rindern und Schafen auf.[52]
Bei Rindern kann Klee darüber hinaus durch schaumige Gärung löslicher, cytoplasmatischer Proteine zu Gasansammlungen im Pansen (Pansentympanie) führen. In Klee enthaltene Cyanogene Glykoside, vor allem Linamarin und Lotaustralin, können zur Blockierung der Atmungskette und zu Krämpfen führen. Phytoöstrogene, vor allem verschiedene Isoflavone, wie Genistein oder Formononetin aus Klee können zu Fruchtbarkeitsstörungen führen.[78]
...
...
Biologische Wirkungen
Lange Zeit galt Thiocyanat nur als Entgiftungsprodukt von Cyanid ohne eigene physiologische bzw. biochemische Bedeutung. Auf Grund der ubiquitären Präsenz von Thiocyanat in allen Zellen und Körperflüssigkeiten von Mensch und Säugetier, der beobachteten Konzentrationsänderungen im menschlichen Organismus z. B. bei Immunisierung, Infektion, Stress, toxischer Belastung, UV-Strahlung und bestimmten Erkrankungen[4] und dem erstmals 1968 geführten Nachweis der Stimulierung der humoralen Immunantwort[14] setzte eine intensive Erforschung weiterer Wirkungen dieses bioaktiven Anions ein. In deren Ergebnis konnten folgende Wirkungen bei physiologischen Dosierungen im Rahmen der physiologischen Regelbreite gesichert werden: Stimulierung von Wundheilung, Phagozytose, Spermiogenese, Haarbildung und Interferonproduktion sowie der Chemofusion bei Protoplasten.[4] Die Stimulation ist besonders ausgeprägt bei SCN--Mangel oder bei erhöhtem Bedarf. Außerdem wirkt Thiocyanat antiphlogistisch und protektiv bei infektiöser, allergischer, toxischer, irritativer und mutagener Belastung.[4] Die antiinfektiöse Schutzwirkung beruht sowohl auf der Förderung der Kolonisationsresistenz [18][19] als auch indirekt durch Bildung von Hypothiocyanit. Bei der Pflanze werden die vegetative Entwicklung, der Ertrag und die Resistenz gegen Mikroorganismen gefördert und eine Schutzwirkung bei toxischer Belastung erreicht.[4] Die durch Oxidation entstehenden Hypothiocyanite sind antimikrobiell hoch wirksam und essenziell für die mikrobielle Abwehr in der Mundhöhle, [13] den Atemwegen, der Tränenflüssigkeit, der Milch, im Vaginalsekret und weiteren Kompartimenten.[6]Wirkungsmechanismus
Durch Thiocyanat wird die Konformation sog. konformationslabiler Proteine in Abhängigkeit von der Art des Liganden der Eisenporphyrine geändert. Auf einer Konformationsänderung beruht offenbar auch die in physiologischen Thiocyanatkonzentrationen aktivitätssteigernde Wirkung auf eine Reihe Arzneimittel metabolisierender und weiterer Enzyme, z. B. Kollagenase, Lysozym, Na+-, K+- ,Mg2+- und anionensensitive ATPase (Myelo- und Lactoperoxidase), Phosphodiesterase; über Letztere kann Thiocyanat über den „Second Messenger“ cAMP Wachstums- und Teilungsprozesse beeinflussen. Weitere auf molekularer Ebene Wirkungen sind die Verschiebung thermodynamischer Gleichgewichte, der Schutz von SH-Gruppen, die Lockerung von H-Brücken-Bindungen mit Entropiezunahme, die Beeinflussung der Hydratation und Affinität von Biomakromolekülen (z. B. bei Antikörpern und Hormonrezeptoren), von Kationen- und Anionentransportprozessen, der Anstieg des Transmembranpotenzials mit damit verbundener Stabilisierung der Zellmembran und der Modulation von Transportvorgängen, die Hemmung der Bildung freier Radikale, die Stabilisierung der DNA und die Hemmung des oxidativen Metabolismus. Über Wechselwirkungen mit den Wasserstoffperoxid-Peroxidase-Systemen ist Thiocyanat in physiologische Kreisprozesse mit konzentrationsabhängig unterschiedlichen Auswirkungen eingebunden, z. B. Beeinflussung von Glykolyse und Glucosetransport, Immunregulation, zytolytischer Lymphozytenaktivität mit Hemmung von Entzündungsreaktionen und Verminderung der DR-Antigene auf der Zelloberfläche. In vitro haben Thiocyanat-Ionen signifikante Effekte auf Glukokortikoidrezeptoren. Offenbar beruht die biologische Aktivität von Thiocyanat-Ionen nicht auf einem einheitlichen Wirkungsmechanismus, sondern ist als Summe verschiedener Teileffekte aufzufassen.[6]
...
...
Cyanogene Glycoside sind weit verbreitete Pflanzengifte aus der Gruppe der Glycoside. Sie bestehen aus einem Glycosid, d. h. einer Verbindung aus einem Alkohol und einem Kohlenhydrat (Zucker), das zusätzlich eine Nitrilgruppe –CN trägt. Bei der enzymatischen Spaltung entsteht daraus u. a. der giftige Cyanwasserstoff HCN, auch Blausäure genannt (daher die Bezeichnung cyanogen).
...
Wirkung
Cyanogene Glycoside selbst haben keinen toxischen Effekt, erst durch Spaltung des Moleküls kommt es zur Freisetzung der Blausäure (HCN), die den eigentlich giftigen Stoff darstellt. Der Abbau erfolgt zunächst enzymatisch. Durch eine mehr oder weniger spezifische β-Glucosidase wird der Zuckeranteil (meist Glucose) abgespalten. Es entsteht das freie Cyanhydrin. Dieses zerfällt spontan oder enzymkatalysiert durch eine Hydroxynitril-Lyase in ein Keton oder Aldehyd und HCN.Entscheidend für diesen als Cyanogenese bezeichneten Vorgang ist die initiale Abspaltung des Zuckeranteils. Beispielsweise wird für die Spaltung des Glycosids Linamarin das Enzym Linamarase benötigt. Bei der intakten Pflanze liegen beide Stoffe in verschiedenen Organellen getrennt vor und das Glykosid bleibt erhalten (Kompartimentierung). Dies hat den Vorteil, dass die Toxine erst dann freigesetzt werden, wenn es zu einer Beschädigung der Pflanzenzellen (etwa durch Insektenfraß) kommt und so das Gift direkt produziert wird (Dekompartimentierung, Pflanzliche Abwehr von Herbivoren).
Toxizität der Blausäure
Die von cyanogenen Glycosiden freigesetzte Blausäure ist für fast alle Tiere hochgiftig. Ursache hierfür ist, dass die Blausäure in den Stoffwechsel eingreift. Die Photosynthese der Pflanzen ist nicht betroffen. Der Energiestoffwechsel der Tiere hingegen wird innerhalb kürzester Zeit lahmgelegt.HCN bindet an das zentrale Eisenion (Sauerstoff-Bindungsstelle) des Enzyms Cytochrom-c-Oxidase, welches eine grundlegende Redoxreaktion der Atmungskette ablaufen lässt. Dadurch wird das Enzym irreversibel inaktiviert. Wenn ein gewisser Anteil der Cytochrom-c-Oxidase durch HCN gebunden ist, fällt die Atmungskette aus, und der Organismus bekommt keine Energie mehr.
...
Polymorphismen beim Weißklee und Hornklee
Ein Polymorphismus von cyanogenen Glycosiden tritt in Europa bei verschiedenen Kleepopulationen auf. Durch Züchtungsexperimente lässt sich feststellen, dass zwei voneinander unabhängige Gene dafür verantwortlich sind.Eines der Gene steuert die Synthese der cyanogenen Glycoside. Nur wenn dieses dominant ist, kann die Pflanze überhaupt diese Substanzen produzieren.
Das zweite Gen ist für das Enzym verantwortlich, das erforderlich ist, um die Glycoside zu spalten und damit gefährlich zu machen. Es gibt daher vier verschiedene Arten von Klee in Bezug auf ihre Toxizität durch cyanogene Glycoside. Nur wenn beide Gene dominant sind, kommt es zur toxischen Wirkung. Andernfalls können die Pflanzen zwar die Glycoside synthetisieren, lassen sie jedoch nicht entfalten. Oder es sind die Enzyme vorhanden, jedoch keine Glycoside, die gespalten werden könnten. Im vierten Fall sind weder Glycoside noch Enzyme vorhanden.
Welche Gene die Pflanze in sich trägt, lässt sich durch chemische Tests untersuchen: Man gibt frische Blätter in ein Teströhrchen, zerquetscht sie kurz mit einem Glasstab zusammen mit einem Tropfen Chloroform und verschließt das Röhrchen mit einem Stopfen, von dem ein Stück in Pikrinsäure-Lösung getauchtes Filterpapier herunterhängt. Eine Färbung innerhalb einer Stunde zeigt an, dass Blausäure vorhanden ist, und damit beide Gene dominant sind.
...
Wenn ich das richtig verstehe, kommt es erstens darauf an, wie stark Klee sich angegriffen fühlt, dass er so reagiert und zweitens auch darauf, ob in diesem Klee diese beiden Gene überhaupt dominant sind.
LG Renate
Keine Kommentare:
Kommentar veröffentlichen